Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala.
نویسندگان
چکیده
The GABA responses of fast-spiking (FS) interneurons and regular-spiking (RS) principal cells were studied using whole cell and perforated-patch recordings in slices of the basolateral amygdala, neo-, and perirhinal cortex. In these three areas, responses to exogenous and synaptically released GABA were abolished by GABA(A) receptor antagonists in FS cells but also included a GABA(B) component in RS cells. Moreover, E(GABA(A)) of FS and RS cells differed from the calculated E(Cl) (-61 mV), but in opposite direction (FS, -54 mV; RS, -72 mV). This was not due to a differential dialysis of FS and RS cells by the pipette solution because the discrepancy persisted when recordings were obtained with the perforated-patch-clamp technique, using the cation-selective ionophore gramicidin. Moreover, pharmacological inhibition of cation-chloride cotransporters revealed that the differing E(GABA(A)) of FS and RS neurons arises from cell-type-specific chloride homeostatic mechanisms. Indeed, the prevalent regulators of the intracellular chloride concentration are cotransporters that accumulate chloride in FS cells and extrude chloride in RS neurons. Thus, our results suggest that in the basolateral amygdala as well as in the parietal and perirhinal cortices, FS interneurons are more excitable than principal cells not only by virtue of their dissimilar electroresponsive properties but also because they express a different complement of GABA receptors and chloride homeostatic mechanisms.
منابع مشابه
Intervention of the Gamma-Aminobutyric Acid Type B Receptors of the Amygdala Central Nucleus on the Sensitivity of the Morphine-Induced Conditionally Preferred Location in Wistar Female Rats
Background: The amygdala is one of the nerve centers involved in drug reward. It is suggested that the central nucleus of the amygdala (CeA) is involved in morphine dependency. The CeA gamma-aminobutyric acid-ergic (GABAergic) system is a mediator of morphine rewarding effects. In this research, the effects of stimulation or inhibition of CeA GABA type B (GABAB) receptors on sensitization acqui...
متن کاملEffect of paraoxon on the synaptosomal GABA uptake in rat hippocampus and cerebral cortex
Introduction: Paraoxon (the neurotoxic metabolite of organophosphorus (OP) insecticide, parathion) exerts acute toxicity by inhibition of acetylcholinesterase (AChE), leading to the accumulation of acetylcholine in cholinergic synapses and hence overstimulation of the cholinergic system. Since, reports on changes in the level of γ- amino butyric acid (GABA) during OP-induced convulsion have bee...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملGABA Concentrations in the Anterior Cingulate Cortex Are Associated with Fear Network Function and Fear Recovery in Humans
Relapse of fear after successful treatment is a common phenomenon in patients with anxiety disorders. Animal research suggests that the inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a key role in the maintenance of extinguished fear. Here, we combined magnetic resonance spectroscopy and functional magnetic resonance imaging to investigate the role of GABA in fear recovery in 70 h...
متن کاملAlpha 1 subunit-containing GABA type A receptors in forebrain contribute to the effect of inhaled anesthetics on conditioned fear.
Inhaled anesthetics are believed to produce anesthesia by their actions on ion channels. Because inhaled anesthetics robustly enhance GABA A receptor (GABA(A)-R) responses to GABA, these receptors are considered prime targets of anesthetic action. However, the importance of GABA(A)-Rs and individual GABA(A)-R subunits to specific anesthetic-induced behavioral effects in the intact animal is unk...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 86 6 شماره
صفحات -
تاریخ انتشار 2001